An integrated optics microfluidic device for detecting single DNA molecules.

نویسندگان

  • Jeffrey R Krogmeier
  • Ian Schaefer
  • George Seward
  • Gregory R Yantz
  • Jonathan W Larson
چکیده

A fluorescence-based integrated optics microfluidic device is presented, capable of detecting single DNA molecules in a high throughput and reproducible manner. The device integrates microfluidics for DNA stretching with two optical elements for single molecule detection (SMD): a plano-aspheric refractive lens for fluorescence excitation (illuminator) and a solid parabolic reflective mirror for fluorescence collection (collector). Although miniaturized in size, both optical components were produced and assembled onto the microfluidic device by readily manufacturable fabrication techniques. The optical resolution of the device is determined by the small and relatively low numerical aperture (NA) illuminator lens (0.10 effective NA, 4.0 mm diameter) that delivers excitation light to a diffraction limited 2.0 microm diameter spot at full width half maximum within the microfluidic channel. The collector (0.82 annular NA, 15 mm diameter) reflects the fluorescence over a large collection angle, representing 71% of a hemisphere, toward a single photon counting module in an infinity-corrected scheme. As a proof-of-principle experiment for this simple integrated device, individual intercalated lambda-phage DNA molecules (48.5 kb) were stretched in a mixed elongational-shear microflow, detected, and sized with a fluorescence signal to noise ratio of 9.9 +/-1.0. We have demonstrated that SMD does not require traditional high numerical aperture objective lenses and sub-micron positioning systems conventionally used in many applications. Rather, standard manufacturing processes can be combined in a novel way that promises greater accessibility and affordability for microfluidic-based single molecule applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A microfluidic system for large DNA molecule arrays.

Single molecule approaches offer the promise of large, exquisitely miniature ensembles for the generation of equally large data sets. Although microfluidic devices have previously been designed to manipulate single DNA molecules, many of the functionalities they embody are not applicable to very large DNA molecules, normally extracted from cells. Importantly, such microfluidic devices must work...

متن کامل

Fluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells

Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...

متن کامل

Fault Tolerant DNA Computing Based on ‎Digital Microfluidic Biochips

   Historically, DNA molecules have been known as the building blocks of life, later on in 1994, Leonard Adelman introduced a technique to utilize DNA molecules for a new kind of computation. According to the massive parallelism, huge storage capacity and the ability of using the DNA molecules inside the living tissue, this type of computation is applied in many application areas such as me...

متن کامل

An integrated microfluidic processor for single nucleotide polymorphism-based DNA computing.

An integrated microfluidic processor is developed that performs molecular computations using single nucleotide polymorphisms (SNPs) as binary bits. A complete population of fluorescein-labeled DNA "answers" is synthesized containing three distinct polymorphic bases; the identity of each base (A or T) is used to encode the value of a binary bit (TRUE or FALSE). Computation and readout occur by h...

متن کامل

Single-molecule DNA amplification and analysis in an integrated microfluidic device.

Stochastic PCR amplification of single DNA template molecules followed by capillary electrophoretic (CE) analysis of the products is demonstrated in an integrated microfluidic device. The microdevice consists of submicroliter PCR chambers etched into a glass substrate that are directly connected to a microfabricated CE system. Valves and hydrophobic vents provide controlled and sensorless loadi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Lab on a chip

دوره 7 12  شماره 

صفحات  -

تاریخ انتشار 2007